# Imports
from PythonInterface import Python
let pathlib = Python.import_module("pathlib") # Python standard library
let gzip = Python.import_module("gzip") # Python standard library
let pickle = Python.import_module("pickle") # Python standard library
let np = Python.import_module("numpy")
# Get the data
path_gz = pathlib.Path('./lost+found/data/mnist.pkl.gz')
f = gzip.open(path_gz, 'rb')
u = pickle._Unpickler(f)
u.encoding = 'latin1'
data = u.load()
data_train = data[0]
data_valid = data[1]
x_train = data_train[0]
y_train = data_train[1]
y_train = np.expand_dims(y_train, 1)
x_valid = data_valid[0]
y_valid = data_valid[1]
y_valid = np.expand_dims(y_valid, 1)
f.close()🔥 Matmul -> Linear Layer
Let us put in the code fom the previous notebook, to do the imports an to load the data.
from DType import DType
from Memory import memset_zero
from Object import object, Attr
from Pointer import DTypePointer, Pointer
from Random import rand
from Range import range
from TargetInfo import dtype_sizeof
struct Matrix[type: DType]:
var data: DTypePointer[type]
var rows: Int
var cols: Int
fn __init__(inout self, rows: Int, cols: Int):
self.data = DTypePointer[type].alloc(rows * cols)
rand(self.data, rows*cols)
self.rows = rows
self.cols = cols
fn __copyinit__(inout self, other: Self):
self.data = other.data
self.rows = other.rows
self.cols = other.cols
fn __del__(owned self):
self.data.free()
fn zero(inout self):
memset_zero(self.data, self.rows * self.cols)
@always_inline
fn __getitem__(self, y: Int, x: Int) -> SIMD[type, 1]:
return self.load[1](y, x)
@always_inline
fn load[nelts:Int](self, y: Int, x: Int) -> SIMD[type, nelts]:
return self.data.simd_load[nelts](y * self.cols + x)
@always_inline
fn __setitem__(self, y: Int, x: Int, val: SIMD[type, 1]):
return self.store[1](y, x, val)
@always_inline
fn store[nelts:Int](self, y: Int, x: Int, val: SIMD[type, nelts]):
self.data.simd_store[nelts](y * self.cols + x, val)fn matrix_dataloader[type: DType]( a:PythonObject, o: Matrix[type], bs: Int) raises:
for i in range(bs):
for j in range(o.cols):
o[i,j] = a[i][j].to_float64().cast[type]()let bs: Int = 5 # batch-size
let ni: Int = x_train.shape[1].to_index() #28*28
let xb: Matrix[DType.float32] = Matrix[DType.float32](bs,ni)
let yb: Matrix[DType.float32] = Matrix[DType.float32](bs,1)
xb.zero()
yb.zero()
matrix_dataloader(x_train, xb, bs)
matrix_dataloader(y_train, yb, bs)Linear layer from foundations
A linear layer is nothing but a matrix multiplication (weights and activations) followed by a vector addition (with the bias term).
So the basic idea here is to use the the matmul example functions from the Modular website as a starting point and add the bias term in it.
let no: Int = 10
var w: Matrix[DType.float32] = Matrix[DType.float32](ni, no) # weights
var b: Matrix[DType.float32] = Matrix[DType.float32](no, 1) # bias
b.zero()
var res = Matrix[DType.float32](xb.rows, w.cols) # result
res.zero()from TargetInfo import dtype_sizeof, dtype_simd_width
from Functional import vectorize
alias nelts = dtype_simd_width[DType.float32]() # The SIMD vector width.
fn lin_vectorized[type: DType](xb: Matrix[type], w: Matrix[type], b: Matrix[type], res: Matrix[type]) raises:
for i in range(xb.rows): # 50000
for j in range(xb.cols): # 784
@parameter
fn dotbias[nelts: Int](k: Int):
res.store[nelts](i,k, res.load[nelts](i,k) + xb[i,j] * w.load[nelts](j,k) + b.load[nelts](k,0))
vectorize[nelts, dotbias](w.cols)res.zero()
lin_vectorized(xb, w, b, res)print(res.rows)
print(res.cols)5
10